domingo, 24 de abril de 2011

5º Dosificación de Hormigones de Alta Resistencia.

La dosificación de los hormigones de alta resistencia debe determinarse en cada caso, en función de las características de los materiales disponibles, de los medios de fabricación y colocación del hormigón Y del tipo de estructura en cuestión. A título meramente indicativo, en la tabla 7.1 se presentan siete dosificaciones utilizadas en obras reales, y las correspondientes resistencias obtenidas con ellas. Como puede observarse en la tabla, la resistencia media a compresión en probeta cilíndrica a 28 días superó en todos los casos los 80 N/mm2. Hay que decir también que el asiento inicial en cono de Abrams de estos siete hormigones fue igual o mayor de 170 milímetros.


TABLA 7.1
EJEMPLOS REALES DE DOSIFICACIÓN DE HORMIGONES
DE ALTA RESISTENCIA  

4º Aditivos y Adiciones Hormigones de Alta Resistencia

Los aditivos normalmente empleados en los HAR son los superfluidificantes, en dosis que suelen oscilar entre 10 y 20 kg por m3 de hormigón. Se consiguen así asientos en cono de Abrams del orden de 150 a 200 milímetros. Los tipos más empleados son a base de policondensados de formaldehido-melanina sulfonados, o bien de naftaleno sulfonado, no siendo recomendables los compuestos lignosulfonados por retrasar en exceso el comienzo del fraguado.

En cuanto a las adiciones, se emplea la microsílice casi exclusivamente, dada su gran finura y su alto valor puzolánico. Por su elevada superficie específica la microsílice es muy ávida de agua, lo que obliga al empleo simultáneo de un superplastificante. Para hormigones de fck superior a 60 N/mm2 el empleo de microsílice es absolutamente imprescindible. Las dosis utilizadas son del orden del 8 al 12 por 100 del peso del cemento e incluso mayores. El ajuste de todas las variables indicadas requiere la realización de ensayos previos.

3º Relación Agua/Cemento de Hormigones de Alta Resistencia.


La relación A/C debe ser muy baja y, por tratarse de hormigones de elevadas resistencias, resulta imprescindible medirla con gran precisión. Para ello es necesario tener en cuenta el agua que contengan, no sólo los áridos, sino también el superfluidificante, así como la posible agua residual que pueda contener la amasadora tras proceder a su limpieza. Por otra parte, si se incorporan adiciones a la masa (microsílice o cenizas volantes), es conveniente referirse a la relación agua/(cemento + adición), ya que las adiciones actúan como un conglomerante más,

En teoría, el valor mínimo de la relación A/C que se requiere para una hidratación completa del cemento es del orden de 0,25 a 0,28. De la experiencia existente en obras efectuadas con HAR se deduce que dicha relación no debe superar el valor 0,35, si bien el Código Modelo CEB-F1P 90 admite valores de hasta 0,40. Como siempre, el valor óptimo habrá de determinarse en cada caso mediante ensayos previos de laboratorio, habida cuenta de la resistencia especificada en proyecto, de la forma de puesta en obra y de las restantes características de la obra en cuestión.

2º Agua y Áridos para Hormigones de Alta Resistencia.


Tanto para el amasado como para el curado del hormigón es prohibitivo utilizar aguas de mar ni aguas salinas. En cuanto a los áridos, además de cumplir estrictamente las características indicadas para hormigones convencionales, deben reunir los siguientes requisitos.
El árido grueso debe ser una gravilla inerte que posea como mínimo la misma resistencia que se exige al hormigón, y que tenga una densidad no inferior a 2,60 kg/dm3. Son muy Convenientes los áridos de machaqueo procedentes de rocas basálticas, ofitas o incluso calizas si son de buena calidad, siendo deseable que su coeficiente de desgaste en el ensayo de Los Ángeles no sea superior a 20. Diversos ensayos efectuados por JNTEMAC demuestran que es posible obtener mejores resultados con áridos calizos que con áridos silíceos, debido probablemente a la mayor absorción de agua de los primeros, lo que mejora la adherencia puta.. árido y, con ello, la resistencia.

El tamaño máximo del árido grueso debe ser de 10 a 12,5 mm, si bien se han empleado CO éxito gravillas de 20 milímetros. Tamaños mayores conducen a hormigones de docilidad j adecuada para su correcta colocación en obra y debilitan, por efecto pared, la interfaz árido pasta. El coeficiente de forma debe ser lo más elevado posible.

El árido fino tiene la mayor importancia, pues de él depende en gran parte la trabajabilidad y resistencia del hormigón. La mayoría de los autores recomiendan  arena silícea de río, CQ módulo granulométrico no inferior a 3 y exenta de finos, ya que las titas dosis de cemento y las eventuales adiciones sustituyen eficazmente esa falta de finos.
La composición granulométrica  del árido total está formada, generalmente, por los dos grupos indicados anteriormente. Si se emplea superfluidificante, la cantidad de árido fino más conveniente se sitúa en torno al 60% de la de árido grueso.

1º Cemento para Hormigones de Alta Resistencia.

Deben utilizarse cementos de clase resistente igual o superior a 42,5. Los más empleados suelen ser los tipos CEM 1 52,5 R y CEM 1 42,5 R, pero si se hormigona en época calurosa o se trata de grandes macizos, convienen más los tipos CEM I 525 y CEM I 42,5 (e incluso los de bajo calor de hidratación) con objeto de disminuir el calor de fraguado y la retracción. Interesa que el cemento tenga un bajo contenido en aluminato tricálcico.

La dosis de cemento suele ser alta, del orden de 450 a 500 kg/m3 de hormigón. La experiencia demuestra que por encima de estos valores se produce una disminución de resistencia cuando se utilizan superfluidificantes, amén de producirse los correspondientes incrementos de calor de fraguado, retracción y coste del hormigón.

Al ser difícil predecir cuál será el comportamiento de cada uno de los cementos disponibles con los aditivos, es necesario realizar ensayos previos para poder determinar cuál de ellos resulta más eficaz.

Materiales componentes y dosificación de los Hormigones de Alta Resistencia.

La elección de materiales componentes para obtener hormigones de alta resistencia depende de muchos factores: resistencia que se desea obtener, medios disponibles para la fabricación y puesta en obra del hormigón, tipo de estructura, disponibilidades económicas, etc. A continuación se ofrecen algunos datos orientativos. 

2.° ADICIONES PARA HORMIGONES DE ALTA RESISTENCIA


Los superfluidficantes  provocan una gran dispersión de las partículas de cemento, impidiendo la floculación de las mismas, con lo que se reduce mucho el agua intersticial y se consigue mejorar considerablemente la hidratación del conglomerante. Se logra así aumentar la plasticidad de la masa con relaciones agua/cemento muy bajas, lo que conduce a obtener hormigones muy trabajables, muy poco porosos y de alta resistencia.

La dosificación de los superfluidificantcs, así como su eficacia, depende de muchos factores: de su composición, del tipo y clase de cemento, de la relación agua/cemento, del tiempo de transporte a obra, de las adiciones, etc. Por otra parte, al envolver el superfluidificante a las partículas de cemento, puede retrasarse algo el comienzo de la hidratación. Además, algunos de estos aditivos pierden su eficacia en breve tiempo, lo que debe tenerse en cuenta en la fabricación, transporte y puesta en obra del hormigón.

La obtención de hormigones de alta resistencia requiere el empleo de altas dosis de cemento de clase resistente elevada, lo que puede conducir a pastas viscosas y a valores elevados del calor de fraguado, con el consiguiente peligro de fisuración de los elementos de hormigóm. Por ello, casi siempre es necesario sustituir una parte del cemento por ciertas adiciones minerales, especialmente microsilice y, a veces, cenizas volantes.

La microsilice o humo de sílice es un subproducto que se obtiene en la fabricación del silicio y ferrosilicio. Los humos engendrados arrastran partículas de sílice muy reactivas, que se recogen mediante filtros electrostáticos. Es un polvo finísimo cuya superficie específica suele ser del orden de 200.000 cm2 por gramo (valor unas 50 veces superior al del cemento) y cuyo contenido en óxido de silicio oscila entre el 85 y el 90 por 100.

La acción de la microsilice sobre el hormigón es doble: por una parte, actúa como árido fino, mejorando la red capilar y disminuyendo el tamaño de los poros; por otra, dado su carácter puzolánico, se combina con la cal libre del cemento formando silicatos, es decir, nuevos compuestos resistentes. Dada su gran finura, el empleo de humo de silice (ver Norma UNE 83.460:94) exige más agua de amasado en el hormigón, lo que hace imprescindible el empleo simultáneo de un superfluidificante.

Las cenizas volantes se obtienen como subproducto en las centrales termoeléctricas. Son polvos muy finos cuya superficie específica es del orden de 5,000 cm’ por gramo, algo superior a la del cemento que suele estar comprendida entre 2.500 4.000 cm2/g. Contienen óxido de silicio en proporción variable entre el 35 y el 60 por 100 Y su actividad puzolánica es menor que la de la microsilice por Un doble motivo: su menor finura y menor contenido en óxido de silicio.
 
Las cenizas volantes proporcionan a la masa del hormigón mayor plasticidad y menor calor de hidratac1. Al sustituir parte del cemento por ceniza volante se reduce la demanda de agua de la masa ‘ las resistencias disminuyen a cortas edades si bien aumentan a largo plazo. El empleo de cenizas no adecuadas puede ocasionar fenómenos expansivos en el hormigón (ver Normas UNE 83.414:90 y EN 450:95).

Con la aportación simultánea de microsilice y superfluidificante a una masa de hormigón de dosificacion adecuada puede reducirse notablemente la relación agua/cemento, obtenindose masas muy trabajables, uniformes y poco segregables, aptas para su colocación por bombeo. Se obtienen así hormigones muy resistentes, impermeables y de gran durabilidad.